Numerical Solution of Soap Film Dual Problems *

Kenneth A. Brakke
Mathematics Department
Susquehanna University
Selinsgrove, PA 17870
email: brakke@susqu.edu

Abstract

The soap film problem is to minimize area, and its dual is to maximize the flux of a divergenceless bounded vector field. This paper discretizes the continuous problem and solves it numerically. This gives upper and lower bounds on the area of the globally minimizing film. In favorable cases, the method can be used to discover previously unknown films. No initial assumptions about the topology of the films are needed. The paired calibration or covering space model of soap films is used to enable representation of films with singularities.

1 Introduction

The soap film problem is to find the soap film that minimizes area subject to appropriate constraints. The two fundamental problems addressed by the numerical methods in this paper are finding a globally area minimizing film for a given soap film problem, and proving that a given film is indeed a global minimum. A precise definition of what a soap film problem is will have to wait until section 3, but an intuitive idea is enough to see the difficulties. Loosely speaking, soap films are area minimizing hypersurfaces, but their treatment in full generality is complicated by the fact that they are not always smooth manifolds, but may have singularities. For 2-dimensional films in a 3-dimensional ambient space, the possible singularities are a triple line, where three films meet at 120° along a curve, or a tetrahedral point, where six films and four triple lines meet at equal angles, proven by Jean Taylor [Taylor 1976]. Further types of singularities are possible in higher dimensions [Brakke 1991] [Sullivan 1995].

*This work was partially supported by the Geometry Center of the University of Minnesota and the University of Massachusetts at Amherst.
A computer program such as the Surface Evolver [Brakke 1992] can represent a surface as a set of flat triangles (or curved patches in more generality), and hence provide an upper bound for area. But the topology of the surface has to be provided at the beginning, and although the topology may change during the evolution to minimum area, all one has at the end is a local minimum of a discrete problem. In very limited circumstances, one can show there is a smooth minimal surface nearby [Underwood 1993], but that is still only a local minimum. The topology of the global minimum may be entirely different. What is needed is a lower bound on the area of the global minimum. If one can get the upper and lower bounds equal, then one has a global minimum. Of course, the global minimum may not be unique. For example, a cubical wire frame bounds an apparent minimizer with a rounded square in the center, and that square can be parallel to any side of the cube.

Fortunately, it often happens that a minimization problem has a corresponding maximization problem whose optimum has the same value. These are called *dual problems*. A simple example is minimizing the circumference of a given area, and maximizing the area bounded by a given length of circumference. A more relevant example here is the max-flow min-cut theorem of network theory: given a graph whose edges have fixed carrying capacities with some nodes designated sources and some designated sinks, find the maximum total flow from sources to sinks. The dual minimization problem is to find a minimal cut, a set of edges with minimum total capacity that separates the sources from the sinks. A continuous version of this that applies to orientable, nonsingular soap films was introduced by [Federer 1969, Federer 1974] and named calibration by [Harvey and Lawson 1982]. The dual maximization problem is to find a divergenceless vectorfield of maximum magnitude 1 with maximum flux through the given boundary of the film. Intuitively, the vectorfield is the velocity of an incompressible fluid. The surface of minimal area is the bottleneck to the flow, so for maximum velocity 1 the maximum flux equals the minimum area.

This paper treats only the area minimization problem with boundary constraints. In particular, it does not treat soap bubble problems (with volume constraints), nor capillary problems (with gravitational energy), although in favorable circumstances these problems are susceptible to extensions of the methods of this paper.

Section 2 gives some preliminary background on surfaces and flows. Section 3 describes a more general calibration model that can handle soap film singularities. Section 4 describes discretization of the model into a form that is a standard optimization problem. Section 5 describes a particular implementation using the Surface Evolver and some custom programs to generate data that can be fed to optimization software. Section 6 discusses some results obtained so far. Briefly, there is the first known calibration of the network spanning the vertices of a regular hexagon, a novel solution found by computer of another plane problem, and some preliminary results on the conjectured minimal film spanning an octahedral frame. Section 7 discusses some works by others.
that have similarities to the approach presented here. Section 8 concludes and outlines some future prospects.

2 Preliminaries

The only mathematical background necessary to understand this paper are the standard concepts of an advanced calculus course (surface integrals, the Divergence Theorem, etc.). But occasional references to more general concepts of integral geometry (currents and differential forms) are tossed in for the cognoscenti. This section explains just enough about currents and differential forms for the purposes of this paper. For fuller discussions, see [Federer 1969] or [Morgan 1995].

The overall domain will be \(N \)-dimensional Euclidean space \(\mathbb{R}^N \), although the ideas extend naturally to any Riemannian manifold. Domains for particular problems are usually chosen to be compact convex sets, since a soap film is always contained in the convex hull of its boundary. All soap films will be \((N-1)\)-dimensional. The types of integrals needed will be integrals of scalar functions over regions and integrals of vector fields over hypersurfaces. A region \(R \) may be defined by a characteristic function \(\chi_R(x) \), with the integral of a scalar function \(f(x) \) being

\[
\int_R f(x) d^N x = \int_{\mathbb{R}^N} f(x) \chi_R(x) d^N x.
\]

We will want to generalize the notion of region so that its characteristic function becomes instead a density function \(Q(x) \) with real values instead of integer values. We still can define the integral of \(f(x) \) as

\[
\int_R f(x) d^N x = \int_{\mathbb{R}^N} f(x) Q(x) d^N x.
\]

This type of region will be referred to as a “smeared” region. Soap films will be viewed as the boundaries of regions. The boundary \(\partial R \) of a region \(R \) is defined precisely to make the Divergence Theorem true. If \(\vec{u}(x) \) is a smooth vector field with compact support, then

\[
\int_R \text{div} \, \vec{u}(x) d^N x = \int_{\partial R} \vec{u}(x) \cdot \vec{N}(x) dA.
\]

For an ordinary region \(R \), \(\partial R \) is the surface of the region with outward unit normal \(\vec{N} \). For a smeared region, the boundary is representable by the negative gradient of the density function:

\[
\int_{\mathbb{R}^N} \text{div} \, \vec{u}(x) Q(x) d^N x = - \int_{\mathbb{R}^N} \vec{u}(x) \cdot \text{grad} \, Q(x) d^N x.
\]
This may be derived by applying the ordinary Divergence Theorem to

$$\int_B \text{div}(\vec{u}(x)Q(x))d^N x$$

where B is some large ball containing the support of $\vec{u}(x)$. The boundary of a smeared region is a smeared surface.

Technically, objects one does k-dimensional integrals over are called k-currents, and the k-dimensional integrands are called differential k-forms. Thus our regions are N-currents, scalar functions are N-forms (also called pseudoscalars), vectorfields are $(N-1)$-forms, and surfaces are $(N-1)$-currents. Smeared surfaces should still be regarded as $(N-1)$-dimensional objects, even though they are smeared out over all N dimensions. The particular class of currents we need are called flat chains, and the vectorfields are the class of flat cochains. In particular, a flow will be a divergenceless flat $(N-1)$-cochain. It turns out to be relatively easy to characterize a flow. It need only be a measurable, bounded vectorfield, and have zero divergence in the weak sense. The latter means that if \vec{v} is a vectorfield and f is a smooth function with compact support, then

$$\int \vec{v} \cdot \text{grad} f = 0.$$

Flows need not be continuous, but at a line of discontinuity the components normal to the line on both sides must be equal. This is enough to guarantee the integrability of flows on all surfaces of interest. The flows in this paper will be piecewise linear and constructed to have zero divergence.

The surfaces in the continuous theory are flat $(N-1)$-chains. Flat chains are dual to the flat cochains. So a flat chain is anything one can integrate flat cochains over. A flat N-chain is simply an integrable scalar function. The boundary of a flat N-chain is automatically a flat $(N-1)$-chain, so the regions defined above with density functions Q are flat N-chains, and their boundaries are flat $(N-1)$-chains. Another way to form a flat chain is to take an oriented rectifiable set. Flat chains that are integer multiples of oriented rectifiable sets are called integer flat chains, and are what we usually think of as soap films. Rectifiable flat chains are rectifiable sets multiplied by real-valued densities. General flat chains are called real flat chains to emphasize the distinction. Hereafter we will often use integer film as a synonym for integer flat chain, and real film for real flat chain.

The equivalent of area for a flat chain T is its mass $M(T)$, defined as the maximum integral over flat cochains of maximum norm 1:

$$M(T) = \sup \{ \int_B \vec{u} \text{ such that } \|\vec{u}(x)\| \leq 1 \text{ for all } x \}.$$

Note the sup is over all flat cochains, not just those with zero divergence. The mass need not be finite, although it will be for all our problems. The mass of an
integer flat chain is just the area of the rectifiable set, times any multiplicities. If T is the boundary of a flat N-chain with density function Q, then the mass of T is the total variation of Q:

$$M(T) = \int ||\text{grad } Q(x)|| d^N x.$$

Hence for finite surface mass, we may take Q to be any function of bounded variation. If Q is a characteristic function of a set, then the boundary of the set is an integer flat chain. Defining the film by means of Q is the bounded variation approach to minimal surfaces of [Giusti 1984]. The flat $(N-1)$-chains in this paper will either be unions of $(N-1)$-dimensional simplices or be boundaries of piecewise linear functions.

3 The continuous model

The mathematical model of soap films used in this paper is the paired calibration [Lawlor and Morgan 1994] or covering space model [Brakke 1995]. The paired calibration model will be described first, as it is perhaps a little clearer. Then the fully general covering space model will be defined.

3.1 The paired calibration model

The paired calibration model regards a soap film as a set of interfaces between regions which form a partition of the domain. Figure 1 is a diagram of the model in the case of finding the shortest 1-dimensional film joining the three vertices of an equilateral triangle (P_1, P_2, P_3 in figure 1). Let the regions be denoted R_1, \ldots, R_n. Let H_{ij} be the interface between regions R_i and R_j, regarded as an oriented surface, or flat chain to be more precise. Hence $H_{ij} = -H_{ji}$. Each region also has an outer boundary $S_i = \sum_j H_{ij} - \partial R_i$ which is regarded as fixed. S_i is called the reference surface for region R_i. The orientations are chosen here so S_i and $\sum_j H_{ij}$ are homologous. Note this makes S_i have inward normal. The minimization problem is

$$\text{Minimize } \quad Z = \sum_{i<j} \text{area}(H_{ij}).$$

A paired calibration is a set of flows \vec{v}_i, one per region, each defined over the entire domain, such that

$$||\vec{v}_i(x) - \vec{v}_j(x)|| \leq 1 \quad \text{for all } i, j \text{ and all } x.$$

The total flux F of a paired calibration is defined as

$$F = \sum_i \int_{S_i} \vec{v}_i \cdot d\vec{A}.$$
\textbf{Theorem 1} If \(\{ \vec{v}_i \} \) is a paired calibration for the set of surfaces \(\{ S_i \} \), then for any regions \(\{ R_i \} \) and corresponding interfaces \(\{ H_{ij} \} \), the total flux is at most the interface area:

\[
\sum_i \int_{S_i} \vec{v}_i \cdot d\vec{A} \leq \sum_{i<j} \text{area}(H_{ij}).
\]

\textbf{Proof:} Since \(\text{div} \, \vec{v}_i = 0 \), then by the Divergence Theorem, some rearrangement, and the flow difference bound,

\[
\sum_i \int_{S_i} \vec{v}_i \cdot d\vec{A} = \sum_i \int_{\bigcup_j H_{ij}} \vec{v}_i \cdot d\vec{A}
\]

\[
= \sum_{i<j} \int_{H_{ij}} (\vec{v}_i - \vec{v}_j) \cdot d\vec{A}
\]

\[
\leq \sum_{i<j} \int_{H_{ij}} 1 \, dA
\]

\[
= \sum_{i<j} \text{area}(H_{ij}).
\]
Hence the total flux of a paired calibration provides a lower bound on the areas of possible soap films. If one can find a paired calibration whose flux is equal to the area of a soap film, then one has a proof that the soap film is a global minimum of area, and we say the vectorfields calibrate the film. The calibration is far from unique. The proof of Lemma 3.1 shows the only serious constraint on it is that the difference of flows be a unit normal at the minimal films.

It is important to realize that if there are multiple global minimal films (as for the cubical wire frame), then any calibration must calibrate all minimal films simultaneously, as follows immediately from the proof.

3.2 Example: simplicial cones

In Figure 1, the minimal film consists of three segments from the vertices P_1, P_2, P_3 to the center of the triangle. Thus it is a cone generated by the three vertices. I call this film the tripod. The simplest calibration consists of three vectorfields, each constant over all of \mathbb{R}^2, of magnitude $1/\sqrt{3}$ and parallel to a segment. Note that it is the magnitude of the difference between vectorfields that is bounded by 1, not the magnitudes of the individual vectorfields. The same kind of calibration can be done to show that the $(N-1)$-dimensional cones over the $(N-2)$-dimensional skeletons of regular N-simplices are absolutely minimizing [Lawlor and Morgan 1994].

3.3 Existence

It follows from Theorem 6.1 of [Brakke 1995] that for any set of reference surfaces $\{S_i\}$ there always is a set of corresponding interfaces $\{H_{ij}\}$ that can be calibrated, but the notion of surface must be understood in the general sense of real flat chains. Soap films are usually imagined to be integer density surfaces, and the existence of global minimizers among integer density films may be proven by compactness. But there are cases where the real density minimum is different from the integer density minimum, and in that case the integer density minimum cannot be calibrated. A prime example is the single bubble problem: to find the minimum area enclosing a given volume. (Although we are not otherwise considering volume constraints in this paper, the techniques generalize.) The integer film minimum is just a sphere, but in the sense of real flat chains, a sphere of twice the radius and $1/8$ the density bounds the same volume but has only half the mass. Hence the real flat chain minimizer does not exist, as the radius goes to infinity and the density and mass go to zero.
3.4 The covering space model

The covering space model is a generalization of the paired calibration model that can handle films that don’t divide space into distinct regions, such as a möbius band film, for example. Let M be a compact region in \mathbb{R}^N, which will be the domain holding the film. Let $B \subset M$ be a closed set, which is meant to hold the boundary of the film. Let Y be a covering space of the complement $M - B$. Let W be the covering space of $M - B$ that, over each point of M, has one sheet for each oriented pair of sheets of Y. Hence locally one can talk about sheet i of Y and sheet ij of W. For an oriented surface H in W, define the projection π_H to be the surface in Y obtained by copying from sheet ij of W a positive copy to sheet i of Y and a negative copy to sheet j of Y. The relation to paired calibrations is that regions correspond to sheets of Y, and sets of interfaces correspond to surfaces H in W. A reference surface S is defined to be a portion of the boundary of Y.

A particular area minimization problem is defined by a choice of Y, and a choice of S. The problem is

\[
\text{Minimize area}(H) \text{ where } \pi_H \text{ is homologous to } S.
\]

Intuitively, the idea is that the two sides of a soap film are oppositely oriented surfaces on different sheets of Y, and the covering space W is there to make sure that sides pair up. Homologous simply means that $\pi_H - S$ is the boundary of a region. If one takes the N-current Q such that $\partial Q = \pi_H - S$, then Q is a scalar density function times M. Q is intuitively the exterior of the film, and we will denote the density function as $Q(y)$ and call it the exterior density function, or just the exterior function. Q is required to be 1 on the reference surface S and zero on the rest of the boundary of Y.

A calibrating flow is a flow \vec{v} in Y that at each point of M satisfies

\[
||\vec{v}_i - \vec{v}_j|| \leq 1
\]

where i and j refer to sheets above the point. One can define the lift of \vec{v} to a vectorfield $\pi\# \vec{v}$ in W by

\[
(\pi\# \vec{v})_{ij} = \vec{v}_i - \vec{v}_j,
\]

and then simply require $||\pi\# \vec{v}|| \leq 1$. The dual maximization problem turns out to be

\[
\text{Maximize } \int_S \vec{v} \cdot d\tilde{A} \text{ such that } \text{div} \vec{v} = 0 \text{ and } ||\pi\# \vec{v}|| \leq 1.
\]

The same existence theorem for covering space films holds as for paired calibrations, with the same caveats. The surface S can be regarded as the source of the flow (in analogy with the network max-flow, min-cut problem), and the rest of the boundary of Y as the sink.
3.5 Symmetries

If the problem has symmetries, then the calibrating flow may be assumed to share these symmetries. The action of a symmetry transformation must be defined to include the permutation of regions in the paired calibration model and of sheets in the covering space model, so that reference surfaces get mapped to reference surfaces. To get a symmetric calibration, simply take any calibrating flow and average over all symmetric transformations of it. Thus if there is a mirror symmetry which maps a given region to itself, we may assume that the flow for that region has no flux across the mirror. For example, figure 2A shows the equilateral triangle divided into its six fundamental regions, labelled A through F. Use subscripts to denote sheets. By rotational symmetry, region A_1 is symmetric to C_2 and E_3. Including mirror symmetries, region A_1 is symmetric to B_1, D_2, and F_3. There are three symmetry classes, which can conveniently be represented either by a single stack of triangles A_1, A_2, A_3 on different sheets, or by triangles A_2, B_2, C_2 on a single sheet. The single stack is used for calculations, and the single sheet is useful for display, as in figures 4 and 5 in section 6.2. The single sheet can be visualized as folding up into the single stack, with creases along the mirror lines. These lines (OP_2 and OJ in figure 2B) will be referred to as fold lines. The edge HP_2 is the reference surface for region R_2, i.e. the source edge with $Q = 1$. The edges P_1J and JP_2 are sink edges with $Q = 0$. Since mirror symmetry along HP_1 maps region R_3 to itself, there is identically zero flux across edges HO and OP_1, and Q values are free

Figure 2: A. Symmetric regions of tripod domain. B. One unfolded stack.

A through F. Use subscripts to denote sheets. By rotational symmetry, region A_1 is symmetric to C_2 and E_3. Including mirror symmetries, region A_1 is symmetric to B_1, D_2, and F_3. There are three symmetry classes, which can conveniently be represented either by a single stack of triangles A_1, A_2, A_3 on different sheets, or by triangles A_2, B_2, C_2 on a single sheet. The single stack is used for calculations, and the single sheet is useful for display, as in figures 4 and 5 in section 6.2. The single sheet can be visualized as folding up into the single stack, with creases along the mirror lines. These lines (OP_2 and OJ in figure 2B) will be referred to as fold lines. The edge HP_2 is the reference surface for region R_2, i.e. the source edge with $Q = 1$. The edges P_1J and JP_2 are sink edges with $Q = 0$. Since mirror symmetry along HP_1 maps region R_3 to itself, there is identically zero flux across edges HO and OP_1, and Q values are free
4 Discrete models

For numerical calculations, the continuous problems will be discretized into a standard optimization problem known as the “minimizing sum of norms” problem, or MSN for short. The goal of MSN is to minimize the sum of Euclidean norms of κ ν-dimensional affine transforms of an n-dimensional vector X, subject to p linear constraints. Our applications will have ν be the dimension of the ambient space, $\nu = 2, 3$. X is a large dimensional vector representing the solution to the problem. The primal problem is

$$\text{Minimize} \quad \sum_{i=1}^{\kappa} ||A_iX - B_i||$$

such that \hspace{1cm} $EX = C,$

where $X \in \mathbb{R}^n$, $A_i \in \mathbb{R}^{p \times n}$, $B_i \in \mathbb{R}^p$, $E \in \mathbb{R}^{p \times n}$, and $C \in \mathbb{R}^p$. The dual problem is

$$\text{Maximize} \quad \sum_i B_i^T Y_i + C^T Z$$

such that \hspace{1cm} $\sum_i A_i^T Y_i + E^T Z = 0,$

$$||Y_i|| \leq 1.$$
the third model performs much better in practice. The models are phrased in terms of arbitrary dimension, but 1-dimensional films in 2-dimensional space illustrate all the ideas.

In all models, the \(N \)-dimensional space \(M \) is triangulated into \(N \)-dimensional simplices in a manner consistent with the boundary set \(B \). Let the set of simplices be indexed by Greek subscripts \(\alpha, \beta, \ldots \). Let the vertices be \(V = v_1, \ldots, v_K \). All simplices will share the positive orientation of \(M \). We will also need to refer to \((N-1) \)-dimensional faces between simplices, and these will be indexed by ordered pairs \(\alpha \beta \). Index 0 will be used for missing simplices outside \(M \). Triangulations of \(Y \) and \(W \) are lifted from \(M \). Let \(s \) be the number of sheets in the covering space \(Y \). In general, it is not possible to assign sheet numbers to simplices of \(Y \) so adjacent simplices have the same sheet number, so we will not try. Instead, the simplices of \(Y \) over a simplex of \(M \) will arbitrarily labelled with sheet numbers, although in practice a useful assignment is made. Points of the film boundary \(B \) will be branch points of \(Y \). We will require that any simplex has no more than \(N-1 \) branch points among its \(N + 1 \) vertices.

4.1 Upper bound model

We seek a piecewise linear scalar function \(Q \) on \(Y \) such that \(Q(y) = 1 \) for \(y \in S \) and \(Q(y) = 0 \) for \(y \in \partial Y - S \). The objective is to minimize the mass of a flat \((N-1) \)-chain \(H \) in \(W \) that projects to the boundary of such a \(Q \). \(H \) need not be the boundary of any \(N \)-chain in \(W \), but in this model we know \(H \) can be represented as a piecewise constant vectorfield \(\tilde{f} \) integrated over Lebesgue measure. The problem thus is

Minimize \(\int_W ||\tilde{f}|| \)

such that \(\pi_\# \tilde{f} = \text{grad } Q \),

\[
Q(y) = \begin{cases} 1 & y \in S \\ 0 & y \in \partial Y - S. \end{cases}
\]

We will define \(Q \) by its values \(q_k \) at the vertices \(v_k \) of \(Y \), and to be piecewise linear on simplices. To evaluate the objective, introduce a vector \(\tilde{f}_{\alpha ij} \) for each pair of sheets \(ij \) over simplex \(\alpha \) of \(M \). Assume \(\tilde{f}_{\alpha ij} = -\tilde{f}_{\alpha ji} \). Then the problem becomes

Minimize \(\sum_\alpha \sum_{i < j} ||\tilde{f}_{\alpha ij}|| \cdot \text{volume}(\alpha) \)

such that \(\text{grad } Q = \sum_j \tilde{f}_{\alpha ij} \) for each simplex \(\alpha \) and each sheet \(i \),

\[
Q(y) = \begin{cases} 1 & y \in S \\ 0 & y \in \partial Y - S. \end{cases}
\]
The MSN vector X consists of all the q_k and all the f_{a_0i}. Another formulation with fewer variables and constraints is to introduce vectors \tilde{F}_{a_0i} for $2 \leq i < j \leq s$, again with $\tilde{F}_{a_0i} = -\tilde{F}_{a_0ji}$. Then the problem is

Minimize

$$\sum_{\alpha} \sum_{i < j} \frac{1}{s} \| \nabla Q_i - \nabla Q_j \| \cdot \text{volume}(\alpha)$$

such that

$$\sum_{i} \nabla Q_i = 0$$

$$Q(y) = \begin{cases} 1 & y \in S \\ 0 & y \in \partial Y - S \end{cases}$$

where F_{a_0i} is to be understood as $F_{a_0i} = -\sum_{i < j} F_{a_0ji}$. Note the F_{a_0i} are chosen to span the nullspace of $\pi_\#$. The relation of the two formulations is simply

$$f_{a_0i} = \frac{1}{s}(\nabla Q_i - \nabla Q_j) + \tilde{F}_{a_0i}.$$

The linearity of Q is awkward around a branch point, since Q is changing very rapidly there. Hence a modification is introduced whereby the value of Q at a branch points is not defined, but Q is defined on a simplex adjacent to a branch point by its values on the non-branch vertices, with linear interpolation between them and level sets parallel to the faces containing all the branch points. That is, in barycentric coordinates with vertices v_0, \ldots, v_p on the branch set,

$$Q(\lambda_0 v_0 + \ldots + \lambda_N v_N) = \frac{\lambda_{p+1} q_{p+1} + \ldots + \lambda_N q_N}{\lambda_{p+1} + \ldots + \lambda_N}.$$

Because the piecewise linear Qs are a subset of all possible flat N-chains, solving the primal problem (1) gives an upper bound to the solution of the continuous problem. The dual problem (2) solved at the same time does not produce a feasible flow. It is only the dual problem of the discrete upper bound problem; it is not a discretization of the lower bound flow problem.

4.2 Lower bound constant vectorfield model

Here we assume a flow that has a constant value \bar{u}_{a_0i} on each simplex α on sheet i of Y. The divergenceless condition is trivial inside simplices, so we only need to require matching fluxes across faces. Also there is the bound on the difference of flows between pairs of sheets. The objective is to maximize flux through the reference surface S. The result is the dual MSN problem (2):

Maximize

$$\sum_{\text{faces } A_{\alpha_0i} \in S} \bar{u}_{a_0i} \cdot \bar{A}_{\alpha 0i}$$

such that

$$(\bar{u}_{a_0i} - \bar{u}_{\beta i}) \cdot \bar{A}_{\alpha \beta i} = 0,$$
\[||\vec{u}_{ai} - \vec{u}_{aj}|| \leq 1 \text{ for sheets } i, j. \]

The notation gets a little awkward here, since sheet labelings are not consistent across faces.

Unfortunately, the software available to me at the moment can only handle bounds on the norms of single variables, not on linear combinations. So we have to introduce vectors \(\vec{w}_{aij} = \vec{u}_{ai} - \vec{u}_{aj} \), and vectors \(\vec{r}_a = \sum_i \vec{u}_{ai} \). Then

\[u_{ai} = \frac{1}{s} \left(\vec{r}_a + \sum_j \vec{w}_{aij} \right). \]

Hence the problem becomes

Maximize \[\sum_{face \ A_{\alpha a} \in S} \frac{1}{s} \left(\vec{r}_a + \sum_j \vec{w}_{aij} \right) \cdot \vec{A}_{\alpha a 0} \]

such that \[\left(\frac{1}{s} \left(\vec{r}_a + \sum_j \vec{w}_{aij} \right) - \frac{1}{s} \left(\vec{r}_\beta + \sum_j \vec{w}_{\beta ij} \right) \right) \cdot \vec{A}_{\alpha \beta i} = 0, \]

\[||\vec{w}_{aij}|| \leq 1. \]

The second set of constraints here is necessary and sufficient for the \(\vec{w}_{aij} \) to be differences of \(\vec{u} \)'s. It is possible to eliminate the \(\vec{r} \)'s by subtracting \(\vec{t}/s \)'s from each \(\vec{u} \). But in practice we will want to delete large portions of \(Y \) that are not critical for the film, leaving \(Y \) to be an uneven covering space. Then the \(\vec{r} \) elimination does not work. So in practice, \(s \) is really \(s_\alpha \), depending on the simplex of \(M \).

Solving the dual MSN problem (2) gives a feasible flow for the continuous problem, hence a lower bound on the continuous area. The simultaneous solution of the primal problem (1) that is generated is not a feasible film, but it should be an approximation of the optimal continuous film. The primal solution generates a vector for each simplex pair in \(W \), whose magnitude is the mass of the film. For visualizing this approximate film, the film can be projected to \(Y \) with \(\pi_\# \).

4.3 Lower bound linear vectorfield model

Here we assume a flow that is linear on each simplex of \(Y \). The flow variables are a vector \(\vec{u}_{a i \tau} \) at each vertex of each simplex \(a i \) of \(Y \), \(\tau \) is the vertex index within a simplex. There is a separate vector for each simplex containing a given
vertex. Inside the simplex, the flow is given by linear interpolation,

\[
\bar{u} = \sum_{\tau=1}^{N+1} \lambda_\tau \bar{u}_{a\tau},
\]

where the \(\lambda_\tau \) are barycentric coordinates. The divergenceless condition inside a simplex turns out to be

\[
\sum_{\tau} \bar{u}_{a\tau} \cdot \bar{A}_{a\tau} = 0,
\]

where \(\bar{A}_{a\tau} \) is the normal vector (proportional to area) of the face opposite vertex \(\tau \). Divergencelessness across faces can be guaranteed by requiring matching fluxes at each endpoint of each face. The flux through a face is the same as for a constant flow equal to the average of the flows at the vertices of the face. Thus the problem becomes

Maximize \[
\sum_{\text{faces}} \sum_{A_{a\alpha} \in S} \frac{1}{N} \sum_{\tau \in A_{a\alpha}} \bar{u}_{a\tau} \cdot \bar{A}_{a\alpha}
\]

such that \[
\sum_{\tau} (\bar{u}_{a\tau} - \bar{u}_{b\tau}) \cdot \bar{A}_{a\beta} = 0,
\]

\[
(\bar{u}_{a\tau} - \bar{u}_{b\tau}) \cdot \bar{A}_{a\beta} = 0,
\]

\[
||\bar{u}_{a\tau} - \bar{u}_{a\beta}|| \leq 1.
\]

Again, due to software limitations, we have to introduce vectors \(\bar{w}_{a\beta\tau} = \bar{u}_{a\tau} - \bar{u}_{a\beta} \), and vectors \(\bar{t}_{a\tau} = \sum_{\tau} \bar{u}_{a\tau} \). Then

\[
\bar{u}_{a\tau} = \frac{1}{s} \left(\bar{t}_{a\tau} + \sum_{j} \bar{w}_{a\beta j\tau} \right).
\]

Hence the problem becomes

Maximize \[
\sum_{\text{faces}} \sum_{A_{a\alpha} \in S} \frac{1}{sN} \sum_{\tau \in A} \left(\bar{t}_{a\tau} + \sum_{j} \bar{w}_{a\beta j\tau} \right) \cdot \bar{A}_{a\alpha}
\]

such that \[
\left(\sum_{\tau} \left(\bar{t}_{a\tau} + \sum_{j} \bar{w}_{a\beta j\tau} \right) - \sum_{\tau} \left(\bar{t}_{b\tau} + \sum_{j} \bar{w}_{b\beta j\tau} \right) \right) \cdot \bar{A}_{a\beta} = 0,
\]

\[
\left(\frac{1}{s} \left(\bar{t}_{a\tau} + \sum_{j} \bar{w}_{a\beta j\tau} \right) - \frac{1}{s} \left(\bar{t}_{b\tau} + \sum_{j} \bar{w}_{b\beta j\tau} \right) \right) \cdot \bar{A}_{a\beta} = 0,
\]

14
\[w_{\alpha i r} + \tilde{w}_{\alpha ij} + \tilde{w}_{\alpha j1} = 0 \text{ for } 2 \leq i < j < N, \]
\[||\tilde{w}_{\alpha ij}|| \leq 1. \]

As in the constant vector field model, we do not want to normalize \(\tilde{f} \) away since \(Y \) may be only an uneven cover of \(M \).

As with the constant flow model, solving the dual MSN problem (2) gives a feasible flow for the continuous problem, hence a lower bound on the continuous area. The simultaneous solution of the primal problem (1) that is generated is not a feasible film, but it should be an approximation of the optimal continuous film. The primal solution generates a vector for each vertex of each simplex pair in \(W \) whose magnitude is the mass of the film. For visualizing this approximate film in figures 5, 7, and 8, the film is projected to \(Y \).

5 Implementation

The software package I have used to solve MSN problems is called GOPT, written by Knud Andersen [Andersen 1993]. I have written several programs to convert data to and from GOPT format. One starting point for a problem is a simple text file that lists the basic simplicial structure for \(Y \). This simplex file can be produced by the Surface Evolver. Other programs read the simplex file and produce input files for GOPT. More programs reads GOPT output and can produce Surface Evolver datafiles, PostScript files, or geomview files. All of my programs are still in their early stages, and are changing rapidly, so are not described in great detail here.

5.1 Surface Evolver

The Surface Evolver is used to create a triangulation of a fundamental region of the covering space \(Y \). I use the Evolver because of my familiarity with it and its wide range of triangulation manipulation and visualization features. The input to Surface Evolver is a datafile describing a fundamental region of the covering space \(Y \). The datafile uses Evolver features to define the initial triangulation, source edges, sink edges, fold edges, and branch points. After \(Y \) is suitably refined, a script in the Evolver command language, trimake.cmd, writes a file in appropriate format for input to the next stage, tri2mps.

5.2 tri2mps

This is a program that takes a file describing a triangulation of \(Y \) and produces a file in the standard MPS format for input to GOPT. The input triangle file is an ordinary text file. The first several lines give data such as the number
of sheets, vertices, and triangles. Next is a list of vertices. Each vertex is on
a separate line, with vertex number, coordinates, multiplicity (the number of
sheets incident to it), and an optional label for branch points. Next is the
edges section. Each edge is specified by edge number, the vertex numbers of its
endpoints, multiplicity, and an optional Q value of 1 for source edges and 0 for
sink edges. Then a section lists the triangles by number and the numbers of the
edges forming each triangle. tri2mps can produce MPS files for all three types
of models.

5.3 GOPT
The GOPT program processes MPS files and creates report files containing
solutions to both the primal and dual problems.

5.4 out2f1m
out2f1m reads the report file generated by GOPT and produces an Evolver
datafile incorporating the GOPT solution. out2f1m uses an Evolver datafile
(an Evolver dump file made at the same time trimake was run) and merges
in the appropriate data. For the upper bound model, each vertex z coordinate
is set to the value of the exterior function Q there, and a film mass for each
triangle is derived from the dual solution. The dual solution actually has a
mass for each pair of triangles in a stack (corresponding to the bound on the
magnitude of the difference of the Q gradients), and out2f1m gives this mass
to each triangle of the pair. For the lower bound model, each triangle gets a
flow vector and a film vector. For the linear flow model, each triangle gets the
average of the three flows at its corners, and the total of the three film masses.

5.5 trim.cmd
The output of out2f1m can be loaded back into the Evolver. Zeros mass triangles
along the source and sink edges can be removed with a trim command script.
This command identifies zero mass triangles adjacent to the source, deletes the
triangle, and declares the new exposed edges to be source edges. It does likewise
along the sink edges. The result is a covering space with an uneven covering of
the base space, but the models are set up to be able to handle that. Figures 9
and 10 shows the result of trimming. Trimming is very useful in reducing the size
of the numerical problem, particularly at higher refinements. Trimming can’t
hurt the upper bound, since any legal exterior function on the trimmed space
can be trivially extended to the original space, but trimming can give an invalid
lower bound, since it is not guaranteed to be possible to extend vectorfields.
Trimming is still very useful in the lower bound model when exploring to find
an unknown film.
5.6 ps.cmd
This contains Evolver commands to produce PostScript files of either the flow or the film. Figure 4 is an example. It spreads the sheets of Y over the page automatically.

5.7 starps.cmd
This is basically the same as ps.cmd, but the sheets are arranged as desired by the user. This is used to produce the single-sheet layouts in figures 4, 5, and 7. Transformation matrices for each sheet have to be hand-coded into starps.cmd.

5.8 Higher dimensions
There is a similar set of programs written for films in three dimensions, although they are written to be able to handle any dimension. These require the use of the simplex model of the Evolver. The main difference from the pure 2-dimensional case is that edges (faces, here) are not available. Hence vertices are labelled according to whether they are on the sink or source. Branch points can be on both. Which simplex \((N-2)\)-dimensional faces are sink or source faces has to be deduced from this information by sim2mps. The simmake Evolver command script writes a simplex datafile for input to sim2mps.

sim2mps takes an input simplex file and produces an MPS file for GOPT. At the moment, the only model supported is the lower bound linear flow model. The simplex file format is a simplified version of the triangle file format.

out3film reads the GOPT report, and can produce several types of output. One is an Evolver datafile, with film and flow data merged into a previous Evolver dump file. out3film can also produce files for the 3D visualization program geomview [Levy et al. 1992], one file for the flow, one for the film, and one for the simplicial skeleton. PostScript files can then be obtained from geomview.

5.9 Reliability of results
In numerical calculations, there is always the question of the accuracy of results, and when one should believe one has found the solution. In one sense, the calibration results are extremely reliable for estimating the mass of the minimizer. The upper and lower bound discrete models provide strict bounds theoretically. GOPT gives a "duality gap" for each discrete problem, so one has strict bounds on the true objective value of the discrete problems. Further, one can check that the solutions given by GOPT do indeed satisfy the necessary constraints.

On the other hand, the location of films found numerically is not so certain. There is no necessity for the current solving the discrete approximation to be near in flat norm to the true minimizer. I know of no theorems that restrict the
location of minimizers, except the classical minimal surface barrier theorems ([Morgan 1995, 10.4]), which are usually not very informative for the covering space model. However, GOPT uses an interior point algorithm which tends to converge to the center of the solution set of currents. Hence the GOPT solution should be a superposition of all possible solutions. So far no situations have turned up where the numerical solution is misleading.

6 Results

This section contains some experimental results. In the tables below, “Step” refers to the refinement level. An ‘x’ after the step means trimming has been done. “Vert.” and “Tri.” are the total numbers of vertices and triangles for all sheets. The GOPT output provides the rest of the columns: “nnorm” is the number of Euclidean norms in the MSN problem, “n(x)” is the number of variables in the primal problem, “nleq” is the number of equality constraints, “objective” is the value of the objective function (total flux or mass), “gap” is the difference between GOPT’s primal and dual solutions of the particular MSN problem, and “time” is GOPT solution time in seconds on an SGI Indigo 2.

6.1 Tripod upper bound, 2D

The tripod is the minimal 1-dimensional film connecting the three vertices of an equilateral triangle. It is pictured in figure 1. For numerical purposes, the domain is taken to be only the convex hull of the vertices, i.e. the equilateral triangle. Further, symmetry is used to reduce the problem by a factor of six. There are three regions, hence three sheets. The full equilateral triangle is initially divided into its six symmetric fundamental regions, each a 30-60-90 triangle, making 18 triangles on all sheets together. By sixfold symmetry, each stack of triangles is equivalent, so we need to solve only one stack. The minimum of the objective in the continuous case is known to be 1.

<table>
<thead>
<tr>
<th>Step</th>
<th>Vert.</th>
<th>Tri.</th>
<th>nnorm</th>
<th>n(x)</th>
<th>nleq</th>
<th>objective</th>
<th>gap</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1.2159728</td>
<td>1e-08</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>2</td>
<td>1.0399747</td>
<td>1e-11</td>
<td>0.04</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>48</td>
<td>48</td>
<td>52</td>
<td>9</td>
<td>1.0187181</td>
<td>1e-11</td>
<td>0.17</td>
</tr>
<tr>
<td>4</td>
<td>117</td>
<td>192</td>
<td>192</td>
<td>218</td>
<td>35</td>
<td>1.0087497</td>
<td>3e-11</td>
<td>1.19</td>
</tr>
<tr>
<td>5</td>
<td>425</td>
<td>768</td>
<td>768</td>
<td>886</td>
<td>135</td>
<td>1.0040750</td>
<td>1e-10</td>
<td>5.35</td>
</tr>
</tbody>
</table>

Table 1: Results for upper bound model of tripod.

The conclusion to draw here is that the upper bound model converges very slowly, at least as presently set up. The basic problem is that a continuous
piecewise linear function is trying to approximate a step function. Faster convergence could probably be obtained by selective refinement of key regions. It may also be necessary to exert much more control over the directions of the edges in the triangulation, to permit Q to bend the way it wants. Due to its relatively poor performance, the upper bound model is neglected for the rest of this paper.

6.2 Hexagon

The integer film joining the vertices of a regular hexagon is known to consist of five of the hexagon sides. See figure 3. However, all attempts to calibrate it have previously failed. Does this very simple film have a complicated calibration, or

![Figure 3](image)

Figure 3: A. Film spanning hexagon. B. Reference surfaces. C. Fundamental region.

is there some fractional density film of lower mass? The paired calibration set-up for the hexagon has six regions, and the reference surfaces are the six sides, S_1, \ldots, S_6, shown in figure 3B. Using the 12-fold symmetry of the hexagon, the problem reduces to one stack of six triangles, shown in figure 3C. The stack unfolds to a single sheet shown in figures 4 and 5. In figure 4, edge AB is the source edge, edges BC, CD, DE, EF, FG are sink edges, AO, OG are zero flux edges, and the other edges are folds.

The hexagon was run with both the lower bound constant flow and lower bound linear flow in order to compare the performance of the two models. Results are in tables 2 and 3. If the integer film is indeed the minimum, the answer should be $5/12 = 0.4166666\ldots$

The integer film certainly seems to be an absolute minimum. The flow from step 3 of the linear model is shown in figure 4, and it is not something to design by hand. Figure 5 shows the corresponding film. Note that the film shown is the
Figure 4: Calibrating flow of the hexagon. Six sheets covering a fundamental region.
Figure 5: A. Calibrating flow on one sheet of the hexagon. B. Film distribution.

<table>
<thead>
<tr>
<th>Step</th>
<th>Vert.</th>
<th>Tri.</th>
<th>nnorm</th>
<th>n(x)</th>
<th>nleq</th>
<th>objective</th>
<th>gap</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>24</td>
<td>60</td>
<td>117</td>
<td>8</td>
<td>0.3993794928</td>
<td>2e-11</td>
<td>0.36</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>96</td>
<td>240</td>
<td>466</td>
<td>32</td>
<td>0.4114536593</td>
<td>2e-11</td>
<td>2.25</td>
</tr>
<tr>
<td>3</td>
<td>221</td>
<td>348</td>
<td>960</td>
<td>1860</td>
<td>128</td>
<td>0.4159658500</td>
<td>1e-10</td>
<td>9.76</td>
</tr>
<tr>
<td>4</td>
<td>825</td>
<td>1536</td>
<td>3840</td>
<td>7432</td>
<td>512</td>
<td>0.416663774</td>
<td>3e-09</td>
<td>71.24</td>
</tr>
</tbody>
</table>

Table 2: Results for lower bound constant flow model of hexagon.

<table>
<thead>
<tr>
<th>Step</th>
<th>Vert.</th>
<th>Tri.</th>
<th>nnorm</th>
<th>n(x)</th>
<th>nleq</th>
<th>objective</th>
<th>gap</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>24</td>
<td>180</td>
<td>337</td>
<td>23</td>
<td>0.4140262160</td>
<td>3e-11</td>
<td>1.30</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>96</td>
<td>720</td>
<td>1346</td>
<td>94</td>
<td>0.41666362460</td>
<td>8e-11</td>
<td>7.50</td>
</tr>
<tr>
<td>3</td>
<td>221</td>
<td>348</td>
<td>2880</td>
<td>1860</td>
<td>128</td>
<td>0.4166666667</td>
<td>3e-10</td>
<td>43.73</td>
</tr>
</tbody>
</table>

Table 3: Results for lower bound linear flow model of hexagon.
symmetric film, the average of all six integer films. It has density \(\frac{5}{6} \), coming from 5 interface pairs of density \(\frac{1}{6} \) each. Thus figure 5 shows film density \(\frac{5}{6} \) along edge \(AB \), and the other projections of the pairs give density \(\frac{1}{6} \) along the sink edges.

The linear flow model is obviously much more efficient than the constant flow model. Hereafter, all examples will be linear flow.

6.3 Crossed tripods

This is an example where the minimal integer film is not the minimal real film. It is somewhat contrived, but it is the 2-dimensional analog of what happens in the octahedron. Suppose the minimal real film joining the vertices of a regular hexagon were as shown figure 6. These are in fact better than figure 3A for a large hexagon in the hyperbolic plane. Any calibration would have to calibrate both simultaneously. In particular, at the center it would have to calibrate two tripods simultaneously, as in figure 7A. The problem in this example is to just consider the two tripods simultaneously. The set-up consists of two sets of tripod problems rotated by 60° with respect to each other (see figure 7B), i.e. “crossed tripods”. There are six vertices of a regular hexagon, but each reference surface is a pair of sides, joining alternate vertices. One tripod set-up has reference surfaces \(S_1, S_2, S_3 \), and the other has \(S_4, S_5, S_6 \). The minimal integer film is presumably two tripods (figure 7A). A couple of years ago, I found the fractional density film shown in figure 8A. It has all films of density \(\frac{1}{2} \).
and less mass than the crossed tripod. The linear flow model gave the results shown in table 4, using basically the same symmetries as for the hexagon. A step with an ‘x’ is a trimmed domain.

<table>
<thead>
<tr>
<th>Step</th>
<th>Vert.</th>
<th>Tri.</th>
<th>unnorm</th>
<th>n(x)</th>
<th>nleq</th>
<th>objective</th>
<th>gap</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>6</td>
<td>45</td>
<td>79</td>
<td>5</td>
<td>0.49487172015</td>
<td>2e-11</td>
<td>0.30</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>24</td>
<td>180</td>
<td>326</td>
<td>22</td>
<td>0.49487151606</td>
<td>2e-11</td>
<td>1.65</td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>96</td>
<td>720</td>
<td>1324</td>
<td>92</td>
<td>0.4954586682</td>
<td>2e-10</td>
<td>6.02</td>
</tr>
<tr>
<td>4</td>
<td>225</td>
<td>384</td>
<td>2880</td>
<td>5336</td>
<td>376</td>
<td>0.4959077068</td>
<td>6e-10</td>
<td>48.53</td>
</tr>
<tr>
<td>4x</td>
<td>78</td>
<td>119</td>
<td>429</td>
<td>836</td>
<td>245</td>
<td>0.49590770677</td>
<td>3e-11</td>
<td>3.94</td>
</tr>
<tr>
<td>5x</td>
<td>238</td>
<td>412</td>
<td>1428</td>
<td>2885</td>
<td>903</td>
<td>0.4961183292</td>
<td>2e-10</td>
<td>20.30</td>
</tr>
<tr>
<td>6x</td>
<td>679</td>
<td>1232</td>
<td>4416</td>
<td>8987</td>
<td>2719</td>
<td>0.496216250</td>
<td>2e-09</td>
<td>118.54</td>
</tr>
<tr>
<td>7x</td>
<td>1981</td>
<td>3728</td>
<td>12060</td>
<td>25133</td>
<td>8655</td>
<td>0.496265</td>
<td>1e-06</td>
<td>342.42</td>
</tr>
</tbody>
</table>

Table 4: Results for lower bound linear flow for crossed tripods.

The flow for step 6x is shown in figure 9 for one sheet. The source edges are ABC, the sink edges CDEF, and the zero flux edges GOA. Figure 10 shows the film as produced by step 7x. The film appears somewhat smeared out in the bottom part of figure 10, but that is probably due the discretization. The figure shows that there are three equal films coming out of vertex C, so each
has density 1/3. By putting the whole film together from this one symmetric
piece, one gets the film shown in figure 8B, which improves over 8A. The Evolver
gives a total mass for 8B of 5.955896492278787, which corresponds to a mass of
0.496324707689899 for one symmetric piece. Extrapolating the table results to
infinite refinement gives something very close to this, so it looks like 8B is the
absolute minimum.

6.4 Octahedron

At least five different integer films can span an octahedral frame. Of these, the
one with the smallest area is shown in two orientations in figure 11. It consists
of flat pieces, with a tetrahedral point in the center. The two views show the
two different orientations possible for this film. Recall that any calibration
would have to calibrate both these films simultaneously, hence calibrate two
superposed tetrahedral points. This is the 3-dimensional version of the crossed
tripod problem. Calibrating by hand has failed, and attempts to find a 3-
dimensional analog to figures 8A or 8B have also failed. So we turn to the
linear flow model. There are 8 regions. Using the 48-fold symmetry, we need
only compute the flow on 1/6 of one face. The results are tabulated in table 5,
and the film from step 3 is shown in figure 12. The corresponding mass of the
integer density film is 0.235702260395516, but that is not close enough to claim
calibration. The film in figure 12 looks like a cloud of surface bits. It might be
approximating the integer film, but it might be different.

This example does have an unexploited symmetry, namely homothetic sym-
metry. If there is a calibration, there will be one which is invariant radially, in
Figure 9: Crossed tripod flow on one sheet of a trimmed domain.

<table>
<thead>
<tr>
<th>Step</th>
<th>Vert.</th>
<th>Tetra.</th>
<th>nnorm</th>
<th>n(x)</th>
<th>nleq</th>
<th>objective</th>
<th>gap</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>8</td>
<td>112</td>
<td>307</td>
<td>11</td>
<td>0.23231724054</td>
<td>2e-11</td>
<td>7.24</td>
</tr>
<tr>
<td>2</td>
<td>63</td>
<td>96</td>
<td>896</td>
<td>2461</td>
<td>93</td>
<td>0.2341254003</td>
<td>2e-10</td>
<td>126.30</td>
</tr>
<tr>
<td>3</td>
<td>165</td>
<td>512</td>
<td>7168</td>
<td>19702</td>
<td>758</td>
<td>0.235256244</td>
<td>1e-09</td>
<td>1523.53</td>
</tr>
</tbody>
</table>

Table 5: Results for lower bound linear flow for crossed tetrahedra.
Figure 10: Fundamental region of minimal real film for crossed tripod problem.
Figure 11: Presumed minimal film on octahedron.

Figure 12: Unfolded fundamental piece of octahedral film from step 3.
the sense of

$$ \tilde{v}(x) = \tilde{v}(cx) $$

for any $c > 0$. This cuts the dimension of the problem from 3 to 2, permitting higher refinements of the triangulation. I have implemented this conical model in a lower bound linear flow, the details of which are omitted here. The objective value for crossed tetrahedra is 0.35353390593274. Of all the refinement schemes tried, the best series of results is in table 6. This gets close to the crossed tetrahedra value, but one couldn’t claim it is converging to it.

<table>
<thead>
<tr>
<th>Step</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.35354431624</td>
</tr>
<tr>
<td>4</td>
<td>0.35354631148</td>
</tr>
<tr>
<td>5</td>
<td>0.35354758418</td>
</tr>
<tr>
<td>6</td>
<td>0.35354843</td>
</tr>
</tbody>
</table>

Table 6: Results for conical symmetry lower bound linear flow for crossed tetrahedra.

Also I have tried a discretization of the upper bound model dual to the conical lower bound, but without getting below the crossed tetrahedral value.

The octahedron is the example that motivated all this numerical work, but the octahedron film must still be regarded as unresolved.

7 Related work

Many schemes have been proposed for numerically calculating minimal surfaces, but very few require no assumption on the topology of the surface, and of those few none can handle soap film singularities.

John Sullivan [Sullivan 1990] proposed a scheme in which the surface spanning a polygonal boundary is chosen from a large set of small polygonal surface elements of various orientations and locations. The actual selection of the set is done by a max-flow min-cut algorithm for a flow linking the boundary. Since an actual spanning surface is found, the scheme provides an upper bound on the area of the smooth absolute minimizer. The accuracy is limited by the available orientations of the set of surface elements, which is similar to some of the limitations in the upper bound schemes of this paper.

Harold Parks [Parks 1977, Parks 1986, Parks 1992] developed a scheme in which minimal surfaces are the level sets of a function of bounded variation that minimizes the L_1 norm of its gradient in a convex domain with given boundary values. The implementation [Parks 1992] represents the function as continuous
piecewise linear on a simplicial decomposition of the domain. The discrete gradient norm minimization turns out to be the same minimizing-sum-of-norms problem that appears in this paper, although the algorithm and software used to solve it are different. The method finds a spanning surface, hence an upper bound on the true minimum area. The great advantage of this method is that by representing the desired surface as just one level set among many, an extra order of smoothness is gained. The orientation of the simplicial decomposition is not critical, since the level set can cut across a simplex in any orientation. The main limitation is that it can only handle a boundary curve on the boundary of a convex domain, and it cannot handle unoriented surfaces or soap film singularities, but within those limitations it would probably be my method of choice.

Harold Parks and Jon Pitts [Parks and Pitts 1995] have another scheme to handle surfaces on arbitrary boundary curves, e.g. linked and knotted curves. The idea is to define some arbitrary reference surface that spans the boundary and then minimize the L_1 norm of the gradient of a function of bounded variation that has a jump of magnitude 1 across the reference surface. There will be a compensating jump across the minimal surface, and the area of the minimal surface is the L_1 norm of the gradient. In the discretization, the function is continuous and piecewise linear on a simplicial decomposition of some domain enclosing the boundary curve and reference surface, except for discontinuities across the reference surface. Again, the discrete minimization problem is minimizing a sum of norms. The accuracy of the method suffers in comparison with the convex domain scheme because here a discontinuous function with a jump of 1 at the minimal surface is being approximated by a continuous function. But there seems to be no obvious way to embed the surface in a foliation of minimal surfaces in order to gain smoothness of the bounded variation function. Essentially, this scheme is the same as the upper bound model of section 4.1 of this paper, with two regions.

8 Conclusion

One would wish that every problem turned out as clearly as shown in figure 10, but the examples show the need for many practical improvements. Even simple problems rapidly reach the limits of current computers. Improvements will undoubtedly be made to general optimization software such as GOPT. But cutting down the size of the problem will be far more important. The linear flow model is more efficient than the constant flow models, and higher order models should be even better. The immediate problem is how to fit higher order problems into the MSN framework. How does one guarantee a bound on the magnitude of a quadratic flow using Euclidean norms at a finite number of points? In the upper bound model, can a discrete function space be found which permits arbitrarily oriented step functions? Trimming is another technique that
can be improved. Currently only simplices adjacent to source or sink edges are trimmed. As figure 10 shows, there can be large interior areas with no film. These could be excised and replaced with a flux conservation constraint. There need to be methods of selective refinement. There also need to be “barrier theorems” that can restrict the film to a narrow region.

Although only soap films are discussed in this paper, the techniques extend to many related problems involving surfaces. The area objective function may be replaced with any positive definite quadratic form of the surface normal, and vector integrals over the surface may be included. This permits surfaces of different surface tensions, Riemannian metrics, gravitational energies, and contact angles on walls. Linear constraints may be added, volumes for example. All these will be added to the software in the future. However, a fundamental limitation will remain, that only real film minimas can be treated. Thus one cannot use these techniques to solve bubble clusters, because the real film minimizer does not exist. But enough has been demonstrated to show the beginnings of a general “soap film technology.”

Software Availability

The GOPT package is available from Knud D. Andersen, kdabeta.dou.dk. There is no charge for academic use. The Surface Evolver is available by anonymous ftp from geom.umn.edu as /pub/software/evolver/evolver.tar.Z. This is a compressed tar file that contains C source code, makefile, sample datafiles, and a manual in TeX dvi format. A PostScript version of the manual is available from the same site as /pub/documents/preprints/CG71/manual-1.98.ps. Other files and programs mentioned in this paper have not been publicly posted, but will be made available to interested parties. The geomview visualization program is also available from geom.umn.edu.

References

